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Kinetic and transport equations for localized excitations in the sine-Gordon model
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We analyze the kinetic behavior of localized excitations—solitons, breathers, and phonons—in the Sine-
Gordon model. Collision integrals for all types of localized excitation collision processes are constructed, and
the kinetic equations are derived. We prove that the entropy production in the system of localized excitations
takes place only in the case of inhomogeneous distribution of these excitations in real and phase space. We
derive transport equations for soliton and breather densities, temperatures, and mean velocities, i.e., show that
collisions of localized excitations lead to the creation of diffusion, thermoconductivity, and intrinsic friction
processes. The diffusion coefficients for solitons and breathers, describing the diffusion processes in real and
phase space, are calculated. It is shown that diffusion processes in real space are much faster than the diffusion
processes in phase space.@S1063-651X~99!03811-8#

PACS number~s!: 05.20.Dd
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I. INTRODUCTION

The problem of kinetic properties of excitations in int
grable models belongs to a class of the most nontrivial pr
lems of physical kinetics. First, enormously long relaxati
of nonlinear excitation has been found in numerical exp
ments by Fermi, Pasta, and Ulam@1#. In Zabusky and
Kruskal’s numerical experiment@2# unexpected behavior o
localized nonlinear excitations was discovered, namely th
interaction without changing their forms and velocitie
Zabusky and Kruskal named them solitons. Shortly after,
analytical method of solving nonlinear differential equati
with partial derivatives—the inverse scattering method—w
found in the framework of the Korteweg–de Vries~KdV!
equation for 111 dimensions@3#. Other physically reason
able continuous models, treatable by the inverse scatte
method are the nonlinear Schro¨dinger ~NS! equation, the
Sine-Gordon~SG! equation, and the Landau-Lifshitz~LL !
equation~see@4,5#!. Common excitations in integrable mod
els are: the one-parameter localized wave, i.e., the so
and the nonlinear periodic wave for the KdV model; t
two-parameter localized wave, i.e., the breather for the
and LL models; and the envelope soliton for the NS eq
tion. All these excitations interact without changing the
forms, their velocities, and therefore their energies; the o
result of their interaction is the shifts of their coordinate
and for breathers and NS solitons the change of their ph
as well. It is worthwhile emphasizing that many-particle e
fects are absent in the following sense: the total shift in c
lisions involving several excitations is equal to the sum
the shifts in each collision~see@4#!.

Soon after analytically solving the KdV equation@3#, Za-
kharov considered the possibility of the kinetic decryption
solitons@6#. In @6#, the kinetic equation for solitons was wri
ten, but only the effect of the renormalization of the solit
PRE 601063-651X/99/60~6!/6645~11!/$15.00
-

i-

ir
.
e

s

ng

n

G
-

ly
,
es

-
l-
f

f

velocity due to soliton-soliton collisions has been cons
ered. Another approach to the investigation of the kine
properties of kink-type solitons was proposed in@7–9#. In @7#
~numerically! and in @8,9# ~analytically! the diffusion of
kinks interacting with phonons in thef4 model was consid-
ered. This model is not exactly integrable, but the poten
for a kink-phonon interaction has a reflectionless form a
the result of the interaction is the same as for soliton-soli
collision in integrable models. Taking into account su
kinds of interactions in@8,9#, the kink diffusion coefficient
was calculated. A bit later the same calculations were d
for the SG model@10#. The renormalization of soliton veloc
ity and the diffusion coefficient of the solitons due to solito
soliton and soliton-magnon collisions have been conside
for the SG model in@11#.

To explain the effect of velocity renormalization it is us
ful to note that the dependence of the soliton coordinatex on
time can be written in the following form:

x~ t !5x01v1t1E
2`

t

dt8E dx2dv2

3uv12v2uDxs~v1 ,v2!u~ t2t8! f ~x2 ,v2 ,t8!,

~1.1!

when shifts of soliton coordinatesDxs(v1 ,v2) are taken into
consideration. In formula~1.1! f (x,v,t) is the distribution
function of solitons or phonon~magnons!, and the sample
soliton collides with the soliton or phonon~magnon! wave
packet (x2 ,v2) at the momentt8,

u~ t !51, t.0, u~ t !50, t,0. ~1.2!

From formula~1.1! one can obtain the following expressio
for the average velocity of the sample soliton:
6645 © 1999 The American Physical Society
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^v1&5v11E dx2dv2uv12v2uDxs~v1 ,v2! f ~x2 ,v2 ,t !.

~1.3!

The diffusion coefficient of soliton is given by

D5
Š@x~ t !2^v&t2x~0!#2

‹

2t
~1.4!

~see@8–10#!.
So the shift of the soliton coordinateDx leads to its dif-

fusion. Do other kinetic coefficients for solitons exist in th
integrable models? This question is closely related to
problem of entropy production. From the fact of conservi
the soliton velocities follows the absence of entropy prod
tion in momentum space only. But in the coordinate sp
the interaction of the solitons is very strong. Therefore
question, does entropy increase in integrable systems, is
nonsensical. The answer to these questions has been giv
@12# for the example of kink-type solitons in the SG mod
In @12# the kinetic equation for the gas of kinks has be
formulated, the entropy production has been proved, and
existence of the coefficients of intrinsic friction and therm
conductivity has been shown. Obviously such kinds of
netic coefficients as the mobility coefficient appear in t
presence of perturbations, which destroy the integrability
the model~see@13# and a review@14#!.

In this paper the kinetic behavior of solitons, breathe
and phonons in the framework of the SG model is cons
ered. We construct collision integrals for all possible co
sions and formulate the system of Boltzmann-type kine
equations for solitons, breathers, and phonons. Based o
system of kinetic equations thus obtained, we prove that
entropy production takes place as a result of randomiza
of the distribution of excitations in coordinate and pha
space. Thus we are able to derive transport equations
solitons and breathers and to calculate self-diffusion coe
cients for soliton-soliton, soliton-breather, and breath
breather collisions as an example.

II. ELEMENTARY EXCITATIONS IN THE SINE-GORDON
EQUATION

The Sine-Gordon equation in dimensionless variables
be written as

w tt2wxx1
m2

b
sinbw50. ~2.1!

Herew is the order parameter,t is the dimensionless time,x
is the dimensionless space coordinate,c51 is the character-
istic velocity, m is the dimensionless mass, andb is the
parameter of nonlinearity.

Equation ~2.1! follows from Hamilton’s equations~see,
for example,@5#!

w t5$H,w%, p t5$H,p%, ~2.2!

with the Hamiltonian
e
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H5
1

2 E Fp21wx
212S m

b D 2

~12cosbw!Gdx[E h~w,p!.

~2.3!

In Eqs. ~2.2! and ~2.3! w and p are the canonically conju
gated coordinate and momentum:

$p~x!,w~y!%5d~x2y!, ~2.4!

where the Poisson brackets are defined in the usual way

$A,B%5E S dA

dp~x!

dB

dw~x!
2

dA

dw~x!

dB

dp~x! Ddx. ~2.5!

It is easy to see that the functionals of total momentumP of
the system

P52E p~x,t !
]w~x,t !

]x
dx ~2.6!

and total ‘‘angular’’ momentumK

K5E xh@p,w#dx, ~2.7!

commute with the Hamiltonian~2.3!.
It is well known that there are two types of localize

excitations~LEs! in the SG model: solitons and breather
The soliton is a one-parameter solution, and the breather
two-parameter solution; the breather can be interpreted as
bound states of two solitons~see@4,5#!. The one-paramete
solution of the SG model, often named the kink, can
written as

ws524
e

b
arctan$exp@ds

21~x2vst2x0s!#%. ~2.8!

The breather solution has the following form:

wb5
4

b
arctanS v2

v1
D sin@v~vb!t2k~vb!x2w0b#

cosh@~db
21~x2vbt2x0b!#

, ~2.9!

where

m~v !5m/A12v2, v~v !5m~v !v1 , k~v !5vm~v !v1 ,

~2.10!
ds

215m~vs!, db
215v2m~vb!.

Heree5$11,21,0% is the soliton topological charge,11 cor-
responds to the soliton,21 to the antisoliton, 0 to the
breather,vs andvb are the soliton and breather velocities,ds
anddb are the soliton and breather sizes,x0s andx0b are the
initial coordinates of the soliton and breather,w0b is the ini-
tial breather phase, andv1 and v2 are the breather param
eters satisfying the following condition~see@5#!:

v1
21v2

251. ~2.11!

Whenv2→0, the breather solution reduces to the followin
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lim
v2→0

wb~x,t !5wp~x,t !

54
v2

b

sin@v~v !t2k~v !x2w0b#

cosh@m~v !v2~x2kt/v2x0b!#
,

~2.12!

and gives a plane-wave solution, i.e., a phonon.
The phonon frequency is related to the wave vectork by

the formula

vph
2 ~k!5m21k2. ~2.13!

The breather velocity, whenv2→0, reduces to the phono
group velocity:

vph5~k/vph!5~]vph /]k!, ~2.14!

and 4v2 becomes the amplitude of phonon oscillations.
From formulas~2.8!, ~2.9!, and~2.3! it is easy to find the

soliton and the breather energy:

Es5Ms /A12vs
2, Eb5Mb /A12vb

2. ~2.15!

The soliton and the breather rest masses are given by

Ms58m, Mb516mv2 . ~2.16!

Whenv2→1, the breather reduces to the soliton-antisolit
bound state with a mass 16m. The difference between th
breather energy and the sum of energies of the isolated
ton and the antisoliton gives the binding energy of t
breather:

DE52
16m

A12v2
~12v2!. ~2.17!

If the system consists ofn1 solitons and ann2 breather, we
have

E5(
s51

n1

Es1 (
b51

n2

Eb , P5(
s51

n1

Ps1 (
b51

n2

Pb ,

K5(
s51

n1

Ks1 (
b51

n2

Kb . ~2.18!

Energy and momentum are related by following formula:

Ei
25Mi

21Pi
2. ~2.19!

Formulas~2.18! allow us to consider solitons and breathe
as elementary excitations of fieldw.

III. COLLISIONS OF LOCALIZED EXCITATIONS

Due to the one-dimensionality of the problem the co
sions of solitons and breather take place without depende
on the valuesx0s and x0b , s51,...,n1 , b51,...,n2 , because
their velocities do not change. This peculiar property follo
from energy- and momentum-conservation laws in the S
Gordon equation as well as other exactly integrable mod
~see@4,5#!. Those conservation laws have the form
n

li-

ce

s
-
ls

v15v18 , v25v28 . ~3.1!

Here and later the values after collision will be denoted w
a prime.

To analyze collision processes it is necessary to take
account the the ‘‘angular’’-momentum conservation la
which can be written as

x1E11x2E25x18E181x28E28 . ~3.2!

The result of collision is coordinate shifts~changes!, and for
breathers phase shifts as well. Furthermore, only pair co
sions exist and there are not many particles effects~see@4#!.
Therefore formulas~3.1! and ~3.2! provide the genera
framework for studying the effects of collisions. In this se
tion conservation laws and the coordinatex01 and phase
changesw01 for all types of collisions will be written explic-
itly from general formulas~see@4,5#!. For simplicity the in-
dex 0 will be omitted.

A. Soliton-soliton collisions

Conservation laws for the two-soliton collision have t
following form:

v1s8 5v1s , v2s8 5v2s , ~x1s8 2x1s!E1s1~x2s8 2x2s!E2s50.
~3.3!

Coordinates shifts are given by

Dx1s5x1s8 2x1s5
4

E1s
sgn~v0!lnuZssu5

d1s

2
sgn~v0!lnuZssu,

Dx2s5x2s8 2x2s52
4

E2s
sgn~v0!lnuZssu

52
d2s

2
sgn~v0!lnuZssu, ~3.4!

where

Zss5
11A12v0

2

12A12v0
2

, v05
~v1s2v2s!

~12v1sv2s!
. ~3.5!

Here v0 is the velocity of the relative motion of solitons
which in the general case can be written as

v05
~v1i2v2k!

~12v1iv2k!
, i ,k5s,b,ph. ~3.6!

B. Soliton-breather collision

In this case conservation laws can be written as

v1s5v1s8 , v2b5v2b8 , v2,b25v2,b28 ,
~3.7!

~x1s8 2x1s!E1s1~x2b8 2x2b!E2b50.

Coordinate shiftsDx are described by the following formu
las:

Dx1s5x1s8 2x1s5
8

E1s
sgn~v0!lnuZsbu5d1s sgn~v0!lnuZsbu,
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Dx2b5x2b8 2x2b52
8

E2b
sgn~v0!lnuZsbu

52
d2s

2
sgn~v0!lnuZsbu, ~3.8!

where

Zsb5
11v2,b2A12v0

2

12v2,b2A12v0
2

, v05
~v1s2v2b!

~12v1sv2b!
. ~3.9!

The breather phase shift (Dw)b is determined by the formula

tan~Dw!b252sgn~v0!
A12v0

2v1,b2

v0
. ~3.10!

Some comments regarding formulas~3.8! and ~3.10! are in
order. For the soliton coordinate shift@formula ~3.8!# due to
the soliton, the soliton-breather collision one has a factor o
instead of 4 as in formula~3.4!. This difference can be ex
plained as follows. Ifv2,b2→1, one can consider a breath
as two solitons with opposite topological charge. Since
coordinate shift does not depend on topological charge,
soliton-breather collision in this case can be considered
soliton–two-soliton collision, and thus the shift is double
Let us mention that in the casev2,b2→1, the quantitiesZss
andZsb are the same.

Formula ~3.10! implies that the phase shift in general
large: (Dw)b2;p. It is small only in the ultrarelativistic cas
uv021u!1. In this case (Dw)b2'2sgn(v0)A12v0

2v1,b2 . If
v0!1, then (Dw)b2'p/2.

C. Soliton-phonon collision

This process is characterized by the following conser
tion laws:

v1s8 5v1s , v2ph8 5v2ph , vph8 5vph ,
~3.11!

~x1s8 2x1s!E1s1~x2ph8 2x2ph!E2ph50.

The expressions forx andw shifts are

Dx2ph5x2ph8 2x2ph52sgn~v0!
mA12vs

2

vph~vph2kvs!
,

~3.12!

Dx1s5x1s8 2x1s52
E2ph

E1s
Dx2ph , ~3.13!

tan~Dw2ph!52sgn~v0!
A12v0

2

v0
. ~3.14!

Phonon energyE2ph and frequencyvph(k) are defined by
the formulas

E2ph516v2vph~k!, vph
2 ~k!5m21k2. ~3.15!

D. Breather-breather collisions

The corresponding conservation laws have the form
8

e
e
a

.

-

v1b8 5v1b , v2b8 5v2b , v2,b18 5v2,b1 , v2,b28 5v2,b2 ,

~3.16!
~x1b8 2x1b!E1b1~x2b8 2x2b!E2b50.

The expressions for thexb andw shifts are

Dx1b5
8

E1b
sgn~v0!lnuZbbXbb8 u5

d1b

2
sgn~v0!lnuZbbZbb8 u,

Dx2b52
8

E2b
sgn~v0!lnuZbbZbb8 u52

d2b

2
sgn~v0!lnuZbbZbb8 u,

~3.17!

tan~Dw1b!52sgn~v0!
2v0A12v0

2 sinc2 cosc1

v0
21~12v0

2!~cos2 c22cos2 c1!
,

~3.18!

tan~Dw2b!52sgn~v0!
2v0A12v0

2 sinc1 cosc2

v0
21~12v0

2!~cos2 c12cos2 c2!
.

~3.19!

Here

Zbb5
12A12v0

2 cos~c11c2!

12A12v0
2 cos~c12c2!

,

~3.20!

Zbb8 5
11A12v0

2 cos~c12c2!

11A12v0
2 cos~c11c2!

.

The anglesc1 andc2 are related to the parametersv2,b1
andv2,b2 by the formulas

sinc15v2,b1 , sinc25v2,b2 . ~3.21!

E. Breather-phonon collision

Since phonons are the limiting case of the breather w
v2→0, formulas for the breather-phonon collision can
obtained from ones in the preceding subsection by passin
the limit v2,b2→0. This means that the second breather
duces to a phonon wave packet and the notion of gr
velocity, and the coordinate of the wave packet automatic
appears. The breather velocityvb reduces to the group ve
locity of the wave packet and the coordinatexb reduces to
the coordinate of the center of the wave packet.

The corresponding conservation law has the form

v1b8 5v1b , v2ph8 5v2ph , v2,b18 5v2,b1 , v2,ph28 5v2,ph2 ,

~3.22!
~x1b8 2x1b!E1b1~x2ph8 2x2ph!E2ph50,

where

Dx2ph52sgn~v0!
2mv2,b1A12v0

2

vph@vph2kvb#@12~12v0
2!v1,b1

2 #
,

~3.23!

Dx1b52
E2ph

E1b
Dx2ph
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Dw1b52sgn~v0!
2v0A12v0

2v1,b1v2,ph2

v0
21~12v0

2!v2,b1
2 , ~3.24!

tan~Dw2ph!52sgn~v0!
2v0A12v0

2v2,b1

v0
22~12v0

2!v2,b1
2 . ~3.25!

F. Phonon-phonon collisions

As is well known, in linear theory phonon-phonon col
sions are absent. Here the phonon-phonon interaction is
result of the nonlinearity of the Sine-Gordon equation. C
responding relations can be obtained from ones in the
ceding subsection by passing the limitv2,b1→0. By consid-
ering v2,b1 as a small quantity,v2,b1!1, one has

v1ph8 5v1ph , v2ph8 5v2ph , Dx1phE1ph1Dx2phE2ph50.
~3.26!

The shift of the phonon’s coordinate is

Dx1ph5sgn~v0!
32

E1ph

A12v0
2v2,ph2v2,ph1

v0
2 ,

~3.27!

Dx2ph52
E1ph

E2ph
Dx1ph ,

where

E1ph516v2,ph1vph1 , E2ph516v2,ph2vph2 . ~3.28!

The change of phonon phase is

Dw1ph522 sgn~v0!v2,ph2

A12v0
2

v0
,

~3.29!

Dw2ph522 sgn~v0!v2,ph1

A12v0
2

v0
.

The examination of phonons as a limiting case of brea
ers offers the possibility of considering changes in phon
phase and coordinate simultaneously.

Let us analyze the phase shifts of breathers and phon
It is easy to see from formulas~3.10! and~3.14! that breather
and phonon shifts are not small for soliton-breather a
soliton-phonon collisions in the general case. For breath
phonon collisions, breather and phonon shifts are essent
different @see Eqs.~3.24! and ~3.25!#. Breather phase shift
are proportional tov2ph and therefore small. The phono
phase shift (Dw)ph'1. For phonon-phonon collisions, pha
shifts are small@see Eq.~3.29!#. This agrees with the stan
dard linear theory of phonons. In accordance with the us
theory of phonons, shifts of phonon wave packets do not t
place.

In conclusion, let us emphasize that the soliton topolo
cal charge is conserved for each type of collision. The p
cesses leading to soliton-antisoliton bound-state forma
and the reverse processes do not take place because o
ergy conservation. Thus in the framework of the exactly
tegrable Sine-Gordon model with Hamiltonian~2.3! the
numbers of solitons, antisolitons, breathers, and phonons
he
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defined by initial conditions at each point of (x,t). Interac-
tions destroying the integrability of the system lead to t
possibility of energy exchange between the LE and to
formation and decay of breathers. In the present paper o
the processes with conservation of energy and topolog
charge have been considered. The processes with energ
change will be analyzed in a future publication.

IV. PROBABILITY OF SCATTERING PROCESSES

To construct collision integrals for processes conside
in this section let us analyze the probability of the cor
sponding scattering process. The simplest process is sol
soliton scattering. By definition the initial statei of a soliton
pair is described by its velocities and center-of-gravity co
dinates:

i[~x1 ,v1 ,x2 ,v2![~1,2!. ~4.1!

The final statef is defined by

f [~x18 ,v18 ,x28 ,v28![~18,28!. ~4.2!

The current density of solitons per unit density is given b

j 15uv0u. ~4.3!

Taking into account formula~4.3! and the fact that two soli-
tons collide in any case, the transition probability per u
time from statei to statef can be presented as

Wi→ f[W~18,28u1,2!

5uv0ud~v182v1!d~v282v2!

3dS E1

E2
~x182x1!1~x282x2! D

3d„x182x12Dx~v1 ,v2!…. ~4.4!

In this formula the first twod functions describe energy con
servation laws, the third one the ‘‘angular’’-momentum co
servation law, and the last describes the coordinate shift.
coordinate shift of the second soliton follows from th
angular-momentum conservation law. The coordinate s
Dx1 is defined by expression~3.4!, ~3.5!.

It is convenient to rewrite formula~4.4! in the form

W~18,28u1,2!5Rss~v18 ,v28uv1 ,v2!d„x182x1

2Dx1~v1 ,v2!…d„x282x22Dx2~v1 ,v2!….

~4.5!

where

Rss~v18 ,v28uv1 ,v2!5uv0ud~v182v1!d~v282v2!. ~4.6!

Let us note that

Rss~v18 ,v28uv1 ,v2!5Rss~v1 ,v2uv18 ,v28!5Rss~v28 ,v18uv2 ,v1!.
~4.7!

For the probability of the inverse process the following e
pression can be written:
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W~1,2u18,28!5Rss~v18 ,v28uv1 ,v2!d„x12x18

1Dx1~v1 ,v2!…d„x22x281Dx2~v1 ,v2!….

~4.8!

Let us emphasize that the probability defined by form
~4.4! does not satisfy the detailed balance principle in
standard form

W̃~18,28u1,2!5W̃~1* ,2* u18* ,28* !. ~4.9!

In Eq. ~4.9! the following notation has been used: (1* )
[(x1 ,2v1).

For further analysis it is convenient to present the expr
sion ~4.5! for the probabilityW as a sum of two partsWr and
Wm:

Wss~1,2u18,28!5Wss
r ~1,2u18,28!1Wss

m~1,2u18,28!,
~4.10!

where

Wss
r 5

1

2
Rss@d~x1s2x1s8 2Dx1s!d~x2s2x2s8 2Dx2s!

2d~x1s2x1s8 1Dx1s!d~x2s2x2s8 1Dx2s!# ~4.11!

Wss
m5

1

2
Rss@d~x1s2x1s8 2Dx1s!d~x2s2x2s8 2Dx2s!

1d~x1s2x1s8 1Dx1s!d~x2s2x2s8 1Dx2s!#.

~4.12!

The probabilityWss
r , as will be shown later, describes th

effect of therenormalizationof the soliton velocity, and the
probability Wss

m describes the homogenization of the solit
phenomena, i.e., the effect of mixing states. The quan
Wss

m is related to entropy production in the soliton gas and
kinetic coefficients~see Secs. V and VI!.

It is easy to convince oneself that

Wss
m~18,28u1,2!5Wss

m~1,2u18,28!. ~4.13!

This equality means that for the dissipative part of the tr
sition probability the usual detailed balance principle
valid.

Let us consider now the general case of the LEi and
k ( i ,k5s,b,ph) for soliton, breather, and phonon corr
spondingly. The probability of such types of collisions p
unit of time Wik can be defined by following formula:

Wik[Wik~18,28u1,2!

5Rikd„Xi82Xi2di~1,2!…d„Xk82Xk2dk~1,2!…,

~4.14!

where

Rik5Rik~Vi8 ,Vk8uVi ,Vk!5uv0ud~Vi2Vi8!d~Vk2Vk8!.
~4.15!

In formulas ~4.14! and ~4.15! the following notations have
been used. Numbers 1 and 2 mean the set of variables d
a
e

s-

ty
e

-

r

fin-

ing the colliding LE states;di is the shift of the LE coordi-
nate or phase. In the case of solitons, 1[(xs ,vs); for the
breather or phonon, 1[(xi ,w i ,v i ,v2i), i 5b,ph. For sim-
plicity the two-component coordinateXi and the two-
component velocityVi have been introduced in the followin
way:

Xs5xs ,Vs5vs , Xi5~xi ,w i !, Vi5~v i ,v2i !, i 5b,ph.
~4.16!

In Eq. ~4.15! the delta functiond(Vi2Vi8) describes the
conservation law of energy and the momentum of each
in the expression~4.14!, the delta function d„Xi82Xi

2di(1,2)… defines the coordinate and phase for breather
phonon shifts after collision.

From the definition ofRik it follows that

Rik5R~Vi8 ,Vk8uVi ,Vk!5R~Vi ,VkuVi8 ,Vk8!. ~4.17!

Later only the case of a weak inhomogeneous gas of
will be considered; i.e., when the characteristic lengthl i of
the distribution function is much larger than the shiftDXi ,

u l i u@uDXi u. ~4.18!

The mean-free path of the LE is

l i;
1

ni
, ~4.19!

because the cross section of the scattering is equal to 1
Using the expression for the breather coordinate shift~see

Sec. III!, the strong inequality~4.18! can be rewritten as

8

Eb
lnuZbbZbb8 u! l i ~4.20!

~kink and phonon cases can be obtained puttingv2→1 and
v2→0 correspondingly!. If the relative velocityv0 is not
small, the condition~4.20! becomes

m~v !v2@
1

l i
;ni , i 5s,b,ph. ~4.21!

This means that average distance between the LE is m
larger than their sizes. In other words, the condition of sm
inhomogeneous Eq.~4.18! coincides with the condition of
small density of the LE gas.

When v1'v2 , and if for simplicity the casev215v22
5v0 is considered, the strong inequality~4.20! leads to the
following one:

1@v0
2@exp2 l im~0!v0/8. ~4.22!

The condition ~4.22! means that the region of velocities
where the gas approximation cannot be satisfied, is expo
tially small. Moreover, if LEs are distributed with som
function in coordinate space~see the following sections!, the
contribution of such types of excitations in LE kinetics
small.

Let us presentWik as a sum of two partsWik
r andWik

m in
the same way as Eqs.~4.10!–~4.12!. Assuming that Eq.
~4.18! is valid, we can expand thed functions in the expres-
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sion ~4.14! for Wik(1,2u1,2) in power seriesDXi . Then the
expressions forWik

r andWik
m become

Wik
r ~18,28u1,2!5Rik~1828,u1,2!S di

]

]Xi
1dk

]

]Xk
D

3d~Xi2Xi8!d~Xk2Xk8!, ~4.23!

Wik
m~18,28u1,2!5Rik~1828,u1,2!F21di

2 ]2

]Xi
2 1dk

2 ]2

]Xk
2

12didk

]2

]Xi]Xk
Gd~Xi2Xi8!d~Xk2Xk8!.

~4.24!

V. COLLISION INTEGRALS

In this section the expressions for the collision integr
for all types of LE in the SG equation will be derived. It
easier to do this starting from the formulas for the probabi
of collisions. Let us introduce following notations:

f 5 f ~X,V,t !, B5B~X,V,t !, N5N~X,V,t ! ~5.1!

for the distribution functions of solitons, breathers, a
phononsf, B, andN, respectively. The probability of finding
the LE in the state (1,11d1) can be defined in the usua
way:

dWi5Fi~1!d1, ~5.2!

wherei 5s,b,ph andFs5 f ,Fb5B,Fph5N. The total result
of the collisions of a sample LE with the other LE is the su
of each collision. This is due to the special type of intera
tion in exactly integrable models. Therefore the general c
lision integral can be presented as a sum of partial collis
integrals. For example, in the case of solitons, the collis
integral can be written as

L5Lss$ f , f %1Lsb$ f ,B%1Lsph$ f ,N%, ~5.3!

whereLss,Lsb ,Lsph are soliton-soliton, soliton-breather, an
soliton-phonon collision integrals, respectively, which ha
the following form:

Lss$ f , f %5E d18d28d2$Wss~1,2u18,28! f ~18! f ~28!

2Wss~18,28u1,2! f ~1! f ~2!%, ~5.4!

Lsb$ f ,B%5E d18d28d2$Wsb~1,2u18,28! f ~18!B~28!

2Wsb~18,28u1,2! f ~1!B~2!%, ~5.5!

Lsph$ f ,N%5E d18d28d2$Wsph~1,2u18,28! f ~18!N~28!

2Wss~18,28u1,2! f ~1!N~2!%. ~5.6!
s

-
l-
n
n

The first term in formula~5.4! and in formulas~5.5! and
~5.6! describes solitons ‘‘arriving’’ at the state~1! as the
result of collisions, and the second term describes solit
‘‘leaving’’ this state.

The general expression for the collision integral has
form

Li5(
k

Lik$FiFk%. ~5.7!

Here

Lik$FiFk%5E d18d28d2$Wik~1,2u18,28!Fi~18!Fk~28!

2Wik~18,28u1,2!Fi~1!Fk~2!%. ~5.8!

Let us discuss once more the detailed balance principle
usual particles in the form.

W̃~18,28u1,2!5W̃~1,2u18,28!. ~5.9!

In this form the detailed balance principle describes tw
particle collision~a generalization to three-, four-, etc pa
ticle collisions is well known!. Formula~5.9! means that the
‘‘arriving’’ number in state~18,28! from state~1, 2! is equal
to the ‘‘leaving’’ number from state~18,28! to state~1,2!. If
the total number of arriving particles to some fixed state~1,
2! is equal to the total number of leaving particles from st
~1,2! then the new smoothed local balance principle can
formulated as

E Wik~1,2u18,28!d18d285E Wik~18,28u1,2!d18d28,

~5.10!

wherei ,k5s,b,ph.
It is not difficult to show that the probabilities of colli

sions defined in Sec. III satisfy this condition. Thus the pro
abilities Wik of LE scattering processes in the SG mod
satisfy the smoothed local balance principle~5.10!, while the
dissipation parts of probabilitiesWik

m satisfy the detailed bal-
ance principle~5.9!.

The distribution functionsf, B, N in thermodynamic equi-
librium must satisfy the following condition:

Lik$Fi ,Fk%50, ~5.11!

in accordance with the smoothed local equilibrium princip
for eachi -k collision integral. It is necessary to emphasi
that the smoothed local balance principle~5.10! puts limita-
tions on the probabilities of collisions, on the thermodynam
equilibrium condition~5.11!, and on the distribution func-
tions Fi .

Having mentioned the general properties of the collis
integrals of LE in the SG equation, we proceed with t
examination of each one. From formulas~4.23! and~4.24! it
is easy to obtain the following expression for the collisi
integral for solitons in the low-density case:

Ls$ f 1 ,F2i%52dvs

] f 1

]x
1Ds~vs!

]2f 1

]x2 , ~5.12!
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where renormalization of the soliton velocitydv and the
local coefficient of self-diffusionDs(v) are given by sum-
ming the partial contributions:

dvs5(
i

dvsi , Ds~vs!5(
i

Dsi~vs!. ~5.13!

Here

dvsi5E uv0uDxsi~v1s ,v2i !Fid2, ~5.14!

Dsi5
1

2 E uv0u@Dxsi~v1s ,v2i !#
2Fid2. ~5.15!

The collision integrals for breathers can be analyzed i
similar way, but with a very important difference, connect
with the conditions~4.20!–~4.22!. The simplest case of a
breather ensemble is an ensemble with a distribution fu
tion of the form

B~x,w,v,v2 ,t !5B~x,w,v,t !d~v02v2!, ~5.16!

wherev0 and the density of particlesni satisfy the condition
v0m(v)@ni .

It is possible to consider more general breather distri
tion functions; e.g.,

B5B~x,w,v,t !b~v!,

whereb(v) has a sharp maximum near the pointv5v0 .
For simplicity only the case~5.16! will be considered. In this
case all integrations underv2 are trivial.

For breathers the collision integral has the followi
form:

Lb$B1 ,F2i%52dvb

]B1

]x
2dvb

]B1

]w
1Db

]2B1

]x2

1Fb

]2B1

]w2 12Kb

]2B1

]x]w
. ~5.17!

The first two terms in this formula describe renormalizati
of the breather velocitydvb and its internal oscillation fre-
quencydvb . The last three terms describe self-diffusion
(x,w) space. As in the soliton case, the quantitiesdvb , dvb ,
Db , Fb , andKb are sums of the partial contributions

dvb5(
i

~dvb! i , dvb5(
i

~vb! i , Db5(
i

~Db! i ,

Fb5(
i

~Fb! i , Kb5(
i

~Kb! i , ~5.18!

where

dvbi5E uv0uDxbi~v1b ,v2i !F2id2, ~5.19!

dvbi5E uv0uDwbs~v1b ,v2i !F2id2, ~5.20!
a

c-

-

Dbi5
1

2 E uv0u@Dxbi~v1b ,v2i !#
2F2id2, ~5.21!

Fbi5
1

2 E uv0u@Dwbi~v1b ,v2i !#
2F2id2, ~5.22!

Kbi5
1

2 E uv0uDxbi~v1b ,v2i !Dwbi~v1b ,v2i !F2id2.

~5.23!

VI. KINETIC EQUATIONS AND ENTROPY PRODUCTION

The Boltzmann-type kinetic equations for LE with th
collision integrals constructed in the preceding section
be written in the following the standard way as

] f

]t
1@v1dvs~v !#

] f

]x
5Ds~v !

]2f

]x2 , ~6.1!

]B

]t
1@v1dvb~V!#

]B

]x
1@v1dvb~V!#

]B

]w

5Db~V!
]2B

]x2 12Kb~V!
]2B

]x]w
1Fb~V!

]2B

]w2 ,

~6.2!

]N

]t
1@v1dvph~V!#

]N

]x
1@v1dvph~V!#

]N

]w

5Dph~V!
]2N

]x2 12Kph~V!
]2N

]x]w
1Fph~V!

]2N

]w2 .

~6.3!

Here terms from collision integrals describing velocity reno
malization have been written on the left-hand sides of E
~6.1!–~6.3!. On the right-hand sides of these equations th
are only those terms describing dissipative processes lea
to homogenization of the distribution functions of LE.

It is necessary to emphasize that the collision integrals
kinetic equations~6.1!–~6.3! are equal to zero in the homo
geneous case. Therefore the stationary solution of the kin
equations have the following form:

f 5 f ~v !, B5B~v,v2!. ~6.4!

Here f (v),B(v,v2) are arbitrary functions of its argument
In other words, the kinetic equations~6.1!–~6.3! describe

homogenization, i.e., the mixing of the distribution function
of LE up to the homogeneous state in real space@for breath-
ers, in (x,w) space#, and demonstrate that chaoticity in mo
mentum space cannot be realized. For chaoticity process
momentum space it is necessary to exceed the limits of
exactly integrable model, i.e., to take into account the ter
destroying the integrability in the Hamiltonian of the syste

Let us now show that homogenization of the distributi
function leads to entropy production in the SG localized e
citation gas. The entropy of the classical soliton gas a
boson gases of breathers and phonons can be defined i
standard way:
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S5(
k

Sk , k5s,b,ph, ~6.5!

Sk52E Fk ln~Fk /e!d1. ~6.6!

The entropy evolution in time is described by the formula

dSk

dt
52E ]Fk~1!

]t
ln Fk~1!d1. ~6.7!

Using kinetic equations~6.1!–~6.3!, and the definitions of
D, K, andF, one can find that

dSk

dt
5E qkd1, ~6.8!

where the sourceq of the entropy production is

qk5E (
i

uv0~1,2!uki

Fi

Fk

3H @Dx~1,2!#ki

]Fk~1!

]x
1@Dw~1,2!#ki

]Fk~1!

]w J 2

d2.

~6.9!

It is obvious that the expression is non-negative. This me
that Eq.~6.9! proves the Boltzmann entropy production the
rem. We would like to emphasize that the entropy product
is connected only with inhomogeneity in real spa
(x,w). It is easy to see that in the homogeneous c
]F/]x5]F/]w50, and there no entropy production.

VII. TRANSPORT EQUATIONS

In this section the consequences of kinetic equati
~6.1!–~6.3! will be analyzed. Let us emphasize that the h
mogenization of LE in real space means the homogeniza
of LE in temperature, concentration, and macroscopic ve
ity spaces. The local macroscopic temperatureT(x) is de-
fined through the local energyE(x) averaged over a distanc
d0 aroundx satisfying the inequalityuDXi u!d0 . In other
words, collisions of LE lead to the creation of diffusio
thermoconductivity, and intrinsic friction processes. It
easy to note that the transport equations will have the form
local conservation laws for each type of LE separately. In
Sine-Gordon system the numbers of solitons, breathers,
phonons are conserved separately. Besides, momentum
ergy, and angular velocity]w/]t ~in the breather case! of
each LE are conserved in each collision. The transport eq
tion can be written in the following general form:

For solitons:

]

]t
ns^as&1

]

]x
@Us

r1Us
m#50. ~7.1!

For breathers:

]

]t
nb^ab&1

]

]x
@Ub

r 1Ub
m#1

]

]w
@Wb

r 1Wb
m#50. ~7.2!
ns
-
n

e

s
-
n

c-

of
e
nd
en-

a-

In formulas ~7.1! and ~7.2! following notations have been
used.

For solitons:

ns^as&5E a~x,v ! f ~x,v,t !dv, ~7.3!

Us
r5E a~x,v !@v1dv# f ~x,v,t !dv, ~7.4!

Us
m52

]

]x E a~x,v !Dsf ~x,v,t !dv. ~7.5!

For breathers:

nb^ab&5E a~x,v,w,v!B~x,v,w,v,t !dv dv, ~7.6!

Ub
r 5E a~x,v,w,v!@v1dv#B~x,v,w,v,t !dv dv,

~7.7!

Ub
m52

]

]x E a~x,v,w,v!DbB~x,v,w,v,t !dv dv

2
]

]w E a~x,v,w,v!KbB~x,v,w,v,t !dv dv,

~7.8!

Wb
r 5E a~x,v,w,v!@v1dw#B~x,v,w,v,t !dv dv,

~7.9!

Wb
m52

]

]w E a~x,v,w,v!FbB~x,v,w,v,t !dv dv

2
]

]x E a~x,v,w,v!KbB~x,v,w,v,t !dv dv.

~7.10!

Substituting 1, the velocity and energy of LE for the va
ablea, it is easy to obtain the following transport equation
continuity equations, hydrodynamics equations, and eq
tions for local energy density. Let us write these equations
an explicit form.

Continuity equations(a51) can be written as

]ns

]t
1

]

]x
~ j s

r1 j s
m!50, ~7.11!

]nb

]t
1

]

]x
~ j b

r 1 j b
m!1

]

]w
~ i b

r 1 i b
m!50. ~7.12!

Here the standard notationsj i and i i have been used forUi
andWi with a51, respectively.

Hydrodynamics equationscan be derived from Eqs.~7.1!
and ~7.2! with a5v and (v,v2b) for solitons and breather
respectively, and have the following form:
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]

]t
nsus1

]

]x
~Ps

r1Ps
m!50, ~7.13!

]

]t
nbub1

]

]x
~Pb

r 1Pb
m!1

]

]w
~Pb

r 1Pb
m!50, ~7.14!

]

]t
nbvb1

]

]x
~Qb

r 1Qb
m!1

]

]w
~Rb

r 1Rb
m!50. ~7.15!

Here us and ub are the hydrodynamic velocities of soliton
and breathers, correspondingly;v is the hydrodynamic ve-
locity in w space;Pi

r and Pi
m , i 5s,b are the pressures fo

solitons and breathers; the quantitiesPb
r and Pm

d are the
pressures of breathers due to inhomogeneities inw space;
and the valuesQ andR are defined by formulas~7.7!–~7.10!
with a5v2b .

The energy transport equationscan be derived whena
5Ei for solitons and breathers. These equations can be w
ten as

]

]t
nsTs1

]

]x
~Us

r1Us
m!50, ~7.16!

]

]t
nbTb1

]

]x
~Ub

r 1Ub
m!1

]

]w
~Wb

r 1Wb
m!50. ~7.17!

The quantitiesTi mean the average energies of correspo
ing LE. Whenui5v i50, the quantitiesTi are the average
energies of chaotic motion.Ui and Wi are energy density
currents; one can conclude that onlyUi

m andWm are differ-
ent from 0 whenui5v i50.

Let us emphasize the important property of transp
equations~7.11!–~7.17!. It is easy to see that, for any homo
geneous distribution functions,

f 5 f ~v,t !, B5B~v,v2b ,t ! ~7.18!

with constant temperatures, hydrodynamic velocities, a
chemical potentialsm i , all dissipative terms in these equa
tions are equal to zero. In other words, there is no energy
momentum exchange between homogeneous gases of
tons and breathers. This special property of Eqs.~7.13!–
~7.17! is eliminated by taking into consideration terms in th
Hamiltonian that destroy the integrability of the model.

As an example of the explicit calculation of transport c
efficients we shall obtain the expression for the self-diffusi
coefficients, assuming that the distribution functions of so
tons and breathers have following form:
it-

-

rt

d

nd
oli-

-
n
-

f 5Cse
2msvs

2/2kBT, B5Cbe2Eb /kBTd~v22v0!.
~7.19!

Let us discuss the concrete expressions for soli
and breather diffusion coefficients due to soliton-solito
breather-breather, and soliton-breather collisions. For s
plicity we will consider the nonrelativistic solitons an
breathers only (v!1). This case corresponds to small tem
peraturesT!m.

The diffusion current of solitons can be presented as

j s
d5

]ns

]x
@nsDss1nbDsb#1

]nb

]x
nsDsb . ~7.20!

Using formulas for (Dw) ik and (Dx) ik from Sec. III, formu-
las ~5.13!, ~5.18!, ~7.5!, and~7.19! it is possible to calculate
both Dss andDsb . We will present here the final results:

Dss5~1/4!ds
2~T/pMs!

1/2$@ ln~gMs /T!#21C%, ~7.21!

Dsb5~1/2!ds
2~2T/pmsb!sb

1/2I sb , ~7.22!

where

I sb5S ln
11v0

12v0
D 2

if T/msb!12v0
2,

I sb5@ ln~2gmsb /T!#21C if 1 @T/msb@12v0
2.
~7.23!

Here

C'1.6, g'1.8.

There are two dissipative currents for breathersj b
d andi b

d ,
which can be written as

j b
d5~nbDbb1nsDbs!

]nb

]x
1nbDbs

]ns

]x

1~nbKbb1nsKbs!
]nb

]w
,

i b
d5~nbFbb1nsFbs!

]nb

]w
1nbKbs

]ns

]x

1~nbKbb1nsKbs!
]nb

]x
. ~7.24!
TABLE I. Diffusion coefficients for breather.

ik T/m ik!12v0
2 1@T/m ik@12v0

2

Jik
D Jik

K Jik
F Jik

D

bs F ln
11v0

12v0
G2 p ln

11v0

12v0

p2 F ln
2gmbs

T G21C

bb F ln
gv0

2Mb

~12v0
2!TG21C p ln

gv0
2Mb

~12v0
2!T

p2

4SF ln
gMb

T G21CD
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After routine calculations the coefficientsDik , Fik , and
Kik can be presented in following general form:

Dbb5
db

2

4 S T

pMb
D 1/2

Jbb
D ,

Dbs5
dbds

4A2p
S T

mbs
D 1/2

Jbs
D , Dik5$Dik ,Fik ,Kik%.

~7.25!

Here

m ik5
MiMk

Mi1Mk
, i ,k5s,b, ~7.26!
o

ra

P.
whereMs andMb are defined by formulas~2.16!.
The expressions forJik

D are presented in the Table I. It i
easy to see that the diffusion of breathers in real spac~x
space! is much faster than the relaxation onw.
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