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We analyze the kinetic behavior of localized excitations—solitons, breathers, and phonons—in the Sine-
Gordon model. Collision integrals for all types of localized excitation collision processes are constructed, and
the kinetic equations are derived. We prove that the entropy production in the system of localized excitations
takes place only in the case of inhomogeneous distribution of these excitations in real and phase space. We
derive transport equations for soliton and breather densities, temperatures, and mean velocities, i.e., show that
collisions of localized excitations lead to the creation of diffusion, thermoconductivity, and intrinsic friction
processes. The diffusion coefficients for solitons and breathers, describing the diffusion processes in real and
phase space, are calculated. It is shown that diffusion processes in real space are much faster than the diffusion
processes in phase spaf81063-651X%99)03811-§

PACS numbd(s): 05.20.Dd

I. INTRODUCTION velocity due to soliton-soliton collisions has been consid-
ered. Another approach to the investigation of the kinetic
The problem of kinetic properties of excitations in inte- properties of kink-type solitons was proposed7a-9]. In [7]
grable models belongs to a class of the most nontrivial probtnumerically and in [8,9] (analytically the diffusion of
lems of physical kinetics. First, enormously long relaxationkinks interacting with phonons in th¢* model was consid-
of nonlinear excitation has been found in numerical experired. This model is not exactly integrable, but the potential
ments by Fermi, Pasta, and Ulapi]. In Zabusky and for a klnk-phono_n interaction has a reflectlonless_ form Qnd
Kruskal's numerical experimeri2] unexpected behavior of the.r(.esultl of _the interaction is the same as for soliton-soliton
localized nonlinear excitations was discovered, namely theigollision in integrable models. Taking into account such
interaction without changing their forms and velocities. Kinds of interactions iri8,9], the kink diffusion coefficient
Zabusky and Kruskal named them solitons. Shortly after, th&vas calculated. A bit later the same calculations were done
analytical method of solving nonlinear differential equationfor the SG model10]. The renormalization of soliton veloc-
with partial derivatives—the inverse scattering method—wadty and the diffusion coefficient of the solitons due to soliton-
found in the framework of the Korteweg—de Vri¢sdV) soliton and sohton_—magnon collisions have been considered
equation for 11 dimensiong3]. Other physically reason- for the SG model if11]. , o
able continuous models, treatable by the inverse scattering 10 €xplain the effect of velocity renormalization it is use-
method are the nonlinear Scinger (NS) equation, the _uI to note that Fhe d_ependence (_)f the soliton coordinaia
Sine-Gordon(SG) equation, and the Landau-LifshittL)  time can be written in the following form:
equation(see[4,5]). Common excitations in integrable mod- .
els are: the one-parameter localized wave, i.e., the soliton X(t):XOJerHJ' dt,f dx,dv,
and the nonlinear periodic wave for the KdV model; the —
two-parameter localized wave, i.e., the breather for the SG , ,
and LL models; and the envelope soliton for the NS equa- X V1=V AXg(V, Vo) O(t—t")(xz,v2,t'),
tion. All these excitations interact without changing their (1.2
forms, their velocities, and therefore their energies; the only
result of their interaction is the shifts of their coordinates,when shifts of soliton coordinatesx(v,,v,) are taken into
and for breathers and NS solitons the change of their phasesnsideration. In formuld1.1) f(x,v,t) is the distribution
as well. It is worthwhile emphasizing that many-particle ef-function of solitons or phonoitimagnong and the sample
fects are absent in the following sense: the total shift in colsoliton collides with the soliton or phonoimagnon wave
lisions involving several excitations is equal to the sum ofpacket &,,v,) at the moment’,
the shifts in each collisioisee[4]).
Soon after analytically solving the KdV equatif8y], Za- o(t)=1, t>0, 6(t)=0, t<O. (1.2
kharov considered the possibility of the kinetic decryption of
solitons[6]. In [6], the kinetic equation for solitons was writ- From formula(1.1) one can obtain the following expression
ten, but only the effect of the renormalization of the solitonfor the average velocity of the sample soliton:
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1 m) 2
<vl>=v1+f dxpdvo| vy — Vo Axg(Vy,Vo) F(Xp,v5,t). H=§f ) E) (1—cosBe) dXEJ h(p, ).
(1.3 2.9
The diffusion coefficient of soliton is given by In Egs.(2.2) and (2.3) ¢ and = are the canonically conju-
gated coordinate and momentum:
([x(t) = (v)t=x(0)]%)
D= (1.4 {m(x), e(y)}=6(x=y), (2.9

2t

where the Poisson brackets are defined in the usual way:
(see[8-10]).
So the shift of the soliton coordinatkex leads to its dif- SA B SA
fusion. Do other kinetic coefficients for solitons exist in the {A,B}=J ( -
integrable models? This question is closely related to the om(x) Se(x)  Sp(x) om(x)

probler_n of entropy production. From the fact of conservinglt is easy to see that the functionals of total momengiof
the soliton velocities follows the absence of entropy produc;[h e system
tion in momentum space only. But in the coordinate space
the interaction of the solitons is very strong. Therefore the

guestion, does entropy increase in integrable systems, is not pP= —f (X,t)
nonsensical. The answer to these questions has been given in

[12] for the example of kink-type solitons in the SG model.

In [12] the kinetic equation for the gas of kinks has been2nd total
formulated, the entropy production has been proved, and the
existenqe_of the coefficients of intrinsic friction aqd thermql Kzf xh[ 7, o]dx, 2.7
conductivity has been shown. Obviously such kinds of ki-

netic coefficients as the mobility coefficient appear in the

presence of perturbations, which destroy the integrability ofommute with the Hamiltonia(2.3). _
the model(see[13] and a review14]). It is well known that there are two types of localized

In this paper the kinetic behavior of solitons, breathersxcitations(LEs) in the SG model: solitons and breathers.
and phonons in the framework of the SG model is consid-The soliton is a one-parameter solution, and'the breather is a
ered. We construct collision integrals for all possible colli- tWo-parameter solution; the breather can be interpreted as the
sions and formulate the system of Boltzmann-type kinetid?ound states of two solitonsee[4,5]). The one-parameter
equations for solitons, breathers, and phonons. Based on t§€lution of the SG model, often named the kink, can be
system of kinetic equations thus obtained, we prove that th#&/ttén as
entropy production takes place as a result of randomization
of the distribution of excitations in coordinate and phase
space. Thus we are able to derive transport equations for
solitons and breathers and to calculate self-diffusion coeffi-
cients for soliton-soliton, soliton-breather, and breather-The breather solution has the following form:
breather collisions as an example.

dx. (2.5

de(X,t)

dx (2.6)

“angular” momentunk

Q= —4£arctar{exp[ 8 Hx—vit—x%e9) 1} (2.8

4 w5 | SIw(Vp)t—K(Vp)X— @op]
¢p=— arctan — — , (2.9

Il. ELEMENTARY EXCITATIONS IN THE SINE-GORDON B w1/ COSH (8 ~“(X—Vpt—Xogp)]

EQUATION
. L . . where
The Sine-Gordon equation in dimensionless variables can

be written as m(v)= m/\1—vZ, o(V)=m\V)w, k(v)=vm(v)w,,
m2 (2.10

eu ¢t g sinBe=0. (2.1 S t=m(ve), 8= wom(vy).

Heree={+1,—1,0 is the soliton topological charge;1 cor-
responds to the soliton;-1 to the antisoliton, 0 to the
breathery¢ andv, are the soliton and breather velocitiés,
and &, are the soliton and breather siz&g, andx,, are the
initial coordinates of the soliton and breatheg, is the ini-
tial breather phase, and; and w, are the breather param-
eters satisfying the following conditiofsee[5]):

Here ¢ is the order parametet s the dimensionless time,
is the dimensionless space coordinate,l is the character-
istic velocity, m is the dimensionless mass, amdis the
parameter of nonlinearity.

Equation(2.1) follows from Hamilton's equationgsee,
for example,[5])

e={H,¢}, m={H,7}, (2.2 w?+wi=1. (2.19)

with the Hamiltonian Whenw,— 0, the breather solution reduces to the following:
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lim @p(X,t) =@p(X,t) Vi=Vi, Vo=V,. (3.0
wy—0
. Here and later the values after collision will be denoted with
2 Slr{w(v)t_k(V)X_QDOb] a prime_
B coshm(v) wa(X—Kt/w—Xgp) ]’ To analyze collision processes it is necessary to take into

(2.12 account the the "angular’-momentum conservation law,
which can be written as
and gives a plane-wave solution, i.e., a phonon. R
The phonon frequency is related to the wave vektdry X E1+XoE =X Ei +X0E, . 3.2

the formula The result of collision is coordinate shiftshangey and for

wgh(k)=m2+k2. (2.13 breathers phase shifts as well. Furthermore, only pair colli-
sions exist and there are not many particles effessg[4]).
The breather velocity, whew,— 0, reduces to the phonon Therefore formulas(3.1) and (3.2) provide the general
group velocity: framework for studying the effects of collisions. In this sec-
tion conservation laws and the coordinatg; and phase
Vph= (Kl @pn) = (dwppl k), (2.14  changespy; for all types of collisions will be written explic-

. o itly from general formulagsee[4,5]). For simplicity the in-
and 4w, becomes the amplitude of phonon oscillations.  dex 0 will be omitted.

From formulas(2.8), (2.9), and(2.3) it is easy to find the

soliton and the breather energy: A. Soliton-soliton collisions

Es=M¢/V1—vZ, Ex=M,/yJ1-Vi. (2.15 Conservation laws for the two-soliton collision have the
following form:
The soliton and the breather rest masses are given by
Vis:Vly VéS:VZSV (Xis_xls)Els+(Xés_XZS)EZSZO-
Ms=8m, Mp=16mw,. (2.19 (3.3

When w,— 1, the breather reduces to the soliton-antisolitonCoordinates shifts are given by
bound state with a mass 16 The difference between the
breather energy and the sum of energies of the isolated soli- Axy

4 O1s
= X1s— X1s==—5gNvo)In|Zsd = = sgn(vp)In|Zsd,
ton and the antisoliton gives the binding energy of the s TISTE Orivo)In|Zs 2 S9vo) 1254

breather: 4
16m AXps=Xpg— Xps= — gsgr{vo)ln|zss|
AE=— —=(1- ). (2.17) S
Vi—v Sos
_ _ =— 759r(Vo)|n|Zss|a (3.4
If the system consists af; solitons and am, breather, we
have where
N1 no Ny no 5
EZE Es+2 Ep., P=Z Ps+2 Py, _1+ Vl_VO . (Vls_VZS)
1 b=1 ] b=1 s 2 VoS vy (3.5
1- 1—VO ( VlsVZS)
ny ny
Here v, is the velocity of the relative motion of solitons
K= K¢+ Ky . 2.1 Y0 . '
;1 s bzl b (2.18 which in the general case can be written as
Energy and momentum are related by following formula: = (Vii—Vak i k=s,b,ph. 3.6
2 2., p2 (1=viiva)
Formulas(2.18 allow us to consider solitons and breathers B. Soliton-breather collision
as elementary excitations of field In this case conservation laws can be written as
Ill. COLLISIONS OF LOCALIZED EXCITATIONS VisTVis: Vb= Vap,  @W2p2T @Wopz,
3.7
Due to the one-dimensionality of the problem the colli- (X1~ X18) E1s+ (X5 — Xop) Eop=0.

sions of solitons and breather take place without dependence . . _

on the values<ys andxqp,, S=1,...n;, b=1,..n,, because Coordinate shifts\x are described by the following formu-
their velocities do not change. This peculiar property followslas:

from energy- and momentum-conservation laws in the Sine- 8

Gordon equation as well as other exactly integrable modelsyy —x' —x, = — sgr{v,)In|Zas| = 51 SGHVo)IN| Zey,
(see[4,5]). Those conservation laws have the form
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, 8 Vip=Vip, Vap=Vop, @yp1=Wopi, @opp=Waps,
AXop=Xpp— Xop="—=—50gNVq)In|Zgy| ’ ' ’ '
Eop , , (3.1
Sos (X1p~ X1p) E1p+ (Xop = X25) E2p=0.
=— —sgnvy)In|Zsy, 3.8 . .
2 grivo)I|Zsy 38 The expressions for the, and ¢ shifts are
where 8 T )
Axlb:E_legr(VO)lnlzbbxbb| = TSQF(VO)|”|bebe|,
1+ wopav1—vp ~ (Vig—Vap) 3.9

ZSb:—’ VO_—
1— wppp1—V2 (1=V1gv2p) 8 : O2p /
22 0 AXop=— E—stgr(vo)ln|bebe| =- TSQF(VO)|H|bebe|v

The breather phase shif\g),, is determined by the formula (3.19
V1—VZoips 2vo\1—vZsiny, cosy
taAg)p=—sgrivo) ————. (310  taAgy)=— O\ Vo SIY2 BOSVA
Vo AR 1) = 80V 2 (1= VB) (coF oo vy
Some comments regarding formulés8) and (3.10 are in (3.18
order. For the soliton coordinate shiformula (3.8)] due to 7.
the soliton, the soliton-breather collision one has a factor of 8 g A g, )= — sgr(ve) — 2Vo1 , VoSings cosy _
instead of 4 as in formul&3.4). This difference can be ex- Vot (1—vg)(cos iy —cos )
plained as follows. Ifw,,,— 1, one can consider a breather (3.19
as two solitons with opposite topological charge. Since the
coordinate shift does not depend on topological charge, thE/€re
soliton-breather collision in this case can be considered as a >
soliton—two-soliton collision, and thus the shift is doubled. 7 _1-V1-vpcodyit )
Let us mention that in the case,,— 1, the quantitieZ P V1—vZcod Y — i)
andZg, are the same. (3.20

Formula(3.10 implies that the phase shift in general is
large: A )y~ 7. Itis small only in the ultrarelativistic case Z!

1+\1—-v§cog 1 — i)

bb
[vo—1|<1. In this case £ ¢) o~ —sgn@o)\/l—vozwl'bz. If
Vo<l, then @(p)b2~77/2

C. Soliton-phonon collision

:1+ V1-v3cos s+ i)

The anglesy; and ¢, are related to the parametews
and w,p, by the formulas

This process is characterized by the following conserva- SiNy1=wop1, SiNYr=wyp5. (3.2)

tion laws:
E. Breather-phonon collision

Vis=Vis, Véph:Vthv w;’)h: Wph

Since phonons are the limiting case of the breather when
w,—0, formulas for the breather-phonon collision can be
obtained from ones in the preceding subsection by passing to
the limit w,,,— 0. This means that the second breather re-
duces to a phonon wave packet and the notion of group
velocity, and the coordinate of the wave packet automatically

appears. The breather velocity, reduces to the group ve-

(3.11

(Xis_xls)Els'l' (Xéph_Xth)Ezphzo-
The expressions fax and ¢ shifts are

my1-v2

AXopn=Xoph— X2ph= —SgNVg) ————————,
P 2ph P wph(wph_kvs)

(3.12  locity of the wave packet and the coordinadg reduces to
the coordinate of the center of the wave packet.
, E2pn The corresponding conservation law has the form
AX1s= Xjg— X15= — E_ISAXth’ (3.13

12 _ ’ _ ! —
Voph=Vophs  Wop1=Wop1,  Wophp= W2ph2,

Ji—v2 (3.22

(3.14 (X1p=X1p) E1p+ (Xzpn = X2pn) E2pn=0,

ro_
Vib=Vib:

o

tan(A ¢zpp) = —sgM(vo)

Phonon energye,,,, and frequencyw,,(k) are defined by where

the formulas

mez’bl\ 1_V0
wprl @pn—kvpl[1— (1-V3)wZ, ]’

(3.23

AXoph=—5gn Vo)

Ezph=16w,0p0(K),  win(K)=m?+k2. (3.1

D. Breather-breather collisions Ezpn
AXqp=——=——

AXoph
The corresponding conservation laws have the form E1p P
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12 defined by initial conditions at each point of,(). Interac-
2v02 ! Vowg’bl(:z’phz, (3.24  tions destroying the integrability of the system lead to the
Vot (1=vo)wop possibility of energy exchange between the LE and to the
formation and decay of breathers. In the present paper only
fan(A )= —sgnvo) 2vo\V1—Vowap (3.29 the processes with conservation of energy and topological
P2ph 9rvo Vi—(1-Vvh)wsp, ' charge have been considered. The processes with energy ex-
' change will be analyzed in a future publication.

A@1p=—5SgMnVvo)

F. Phonon-phonon collisions
IV. PROBABILITY OF SCATTERING PROCESSES

As is well known, in linear theory phonon-phonon colli-
sions are absent. Here the phonon-phonon interaction is the TO construct collision integrals for processes considered
result of the nonlinearity of the Sine-Gordon equation. Cor-in this section let us analyze the probability of the corre-
responding relations can be obtained from ones in the presPonding scattering process. The simplest process is soliton-
ceding subsection by passing the limif,;— 0. By consid- soliton scattering. By definition the initial stait@f a soliton

ering w,,,; as a small quantityw,,;<1, one has pair is described by its velocities and center-of-gravity coor-
' ' dinates:
Viph=Viph: V2ph=Vaph: AXiphE1pnt AXopnEzpn=0. _
P P (32@ |E(X1,V1,X2,V2)E(l,2). (41)
The shift of the phonon’s coordinate is The final statef is defined by
32 \1-Viwaprawapn f=(x1,vi.X5,vy)=(1"2"). (4.2
AXq1pn=5SgM Vo) E > , _ _ _ o
1ph Vo The current density of solitons per unit density is given by
(3.27
E1pn j1=|vol- (4.3
AXopp=—=——AX1ph,
2ph E2ph 1ph

Taking into account formulé.3) and the fact that two soli-
where tons collide in any case, the transition probability per unit
time from state to statef can be presented as
E1ph=16wopm@pn1,  Ezph=16wopno@pn. (3.28
W,_=W(1',2'|1,2

The change of phonon phase is , ,
=|vol8(vi—v1)8(vy—V5)

V1-v§

- _ E
Ap1ph=—2SgnVo) woph2 vo XS E_i(xi_xl)_"(xé_XZ)

(3.29
\/ﬁg Xé(xi_xl_AX(Vl,Vz)). (44)

Vo

Agopn=—2SgM Vo) @z pny
In this formula the first twas functions describe energy con-
The examination of phonons as a limiting case of breathS€rvation laws, the third one the “angular”-momentum con-

ers offers the possibility of considering changes in phonoﬁervapon law, and the last describes j[he coordinate shift. The

phase and coordinate simultaneously. coordinate shift of the secor_1d soliton follows from the_
Let us analyze the phase shifts of breathers and phonon@Ngular-momentum conservation law. The coordinate shift

It is easy to see from formula8.10 and(3.14) that breather 21 iS defined by expressiof8.4), (3.5).

and phonon shifts are not small for soliton-breather and 't 1S convenient to rewrite formulé.4) in the form

soliton-phonon collisions in the general case. For breather-

phonon collisions, breather and phonon shifts are essentially W(L',2'|1,2)=Redv1,ValV1,v2) (x1 — X

different[see Eqs(3.24 and(3.25]. Breather phase shifts — AXq(V1,V2)) 8(X5— Xo— AXo(V1,V2).
are proportional tow,,, and therefore small. The phonon
phase shift 4 ¢) ,n~ 1. For phonon-phonon collisions, phase (4.5

shifts are smal[see Eq.(3.29]. This agrees with the stan- here
dard linear theory of phonons. In accordance with the usual’
theory of phonons, shifts of phonon wave packets do not take ro , ,
place, 1 oTpnonen WAE P Rod V4 V3lV1V2) = Vol 8vi Vi) 8(vs=vo). (4.6

In conclusion, let us emphasize that the soliton topologiq ¢t s note that
cal charge is conserved for each type of collision. The pro-
cesses leading to soliton-antisoliton bound-state formatiorR (v vj|vy,v,)=RedV1,V3|V] V5 =Rsd V5, V}|Va,v1).
and the reverse processes do not take place because of en- 4.7
ergy conservation. Thus in the framework of the exactly in-
tegrable Sine-Gordon model with Hamiltonia2.3) the  For the probability of the inverse process the following ex-
numbers of solitons, antisolitons, breathers, and phonons apgession can be written:
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W(1,211",2")=Red V] ,V|V1,Vo) 8(X;— X} ing the colliding LE statesl; is the shift of the LE coordi-
nate or phase. In the case of solitonss (X,vs); for the
+Ax3(V1,V2)) 0(Xa— X5+ AXa(V1,V2)). breather or phonon, Z(x;,¢;,V;,®5), i=b,ph. For sim-

(4.8 plicity the two-component coordinat¥; and the two-
component velocity/; have been introduced in the following
Let us emphasize that the probability defined by formulaway:
(4.4) does not satisfy the detailed balance principle in the ,
standard form Xs=Xs,Vs=Vs, Xi=(Xi,¢i), Vi=(vi,0y), i=b,ph.

(4.16
A Y —\N/(1* 1% otk
W(L".2'1,2 =W(1*,2"[1"* ,2""). (4.9 In Eq. (4.19 the delta functions(V;— V) describes the
In Eq. (4.9 the following notation has been used:*(1 conservation law of energy and the momentum of each LE;
=(X1,—V1). in the expression(4.14), the delta function (X —X;
For further analysis it is convenient to present the expres= di(1,2)) defines the coordinate and phase for breather and

sion (4.5) for the probabilityW as a sum of two parté/ and ~ Phonon shifts after collision.
W From the definition ofR;, it follows that

Wod(1,217,2))=WL(1,21",2")+WT(1,21',2"), Ric=R(V{ Vi Vi Vi) =R(V; V| V{ ,Vy). (4.1

4.1 :
(4.19 Later only the case of a weak inhomogeneous gas of LE
where will be considered; i.e., when the characteristic lenigtbf
the distribution function is much larger than the shiX; ,

1
W;szsts{é(Xls_xls_Axls) O(Xas™ X AXas) Ili|=[AX]. (4.18

— 8(Xqs— X}o+ AXqs) S(Xps—Xjo+ AXog)] (4.1)  The mean-free path of the LE is

1
1 =
W;nszsti 5(X13—X£S—AX15) O(Xas— Xés_AXZS) l n; ' (4.19
+ 0(Xgs— X157 AX15) 8(Xas— Xps+ AXs) |- because the cross section of the scattering is equal to 1.

Using the expression for the breather coordinate $béfe
(412 sec. I, the strong inequality4.18 can be rewritten as

The probabilityW,, as will be shown later, describes the 8
effect of therenormalizationof the soliton velocity, and the E—In|beZ{)b|<Ii (4.20
probability Wiy describes the homogenization of the soliton b

phr;apomena, i.e., the effect of 'mix'ing state's. The quantit)(kink and phonon cases can be obtained putting-1 and
Wsis related to entropy production in the soliton gas and the,, .0 correspondingly If the relative velocityv, is not

kinetic coefficientysee Secs. V and VI small, the conditior(4.20 becomes
It is easy to convince oneself that

1
WI(1',2'[1,2=WT(1,241",2'). 4.13 m(v)w,>—~n;, i=s,b,ph. (4.21)

S |i
T.h.'s equality means that for the d.|55|pat|ve part O.f th_e tra.n'This means that average distance between the LE is much
sition probability the usual detailed balance principle IS, han their si in oth ds. th diti f I
valid. arger than their sizes. In other words, the condition of sma

Let us consider now the general case of the iLEnd inhomogeneous Eq4.18 coincides with the condition of

k (i,k=s,b,ph) for soliton, breather, and phonon corre- small density of the LE gas.

. - o Whenv,~v,, and if for simplicity the casav,;=w
spondingly. The probability of such types of collisions per . 172 . . 21”22
uFr)wit of ti%?éz Wiy cgn be def)ilned by foll)(/)r\)/ving formula: P = wo IS considered, the strong inequaliy.20 leads to the

following one:
Wi =W (17,2'|1,2)

=Ry X! —X;—di(1,2) 8(X — X, —di(1,2),

1>visexp MO8, (4.22

The condition(4.22 means that the region of velocities,
(414 \where the gas approximation cannot be satisfied, is exponen-
tially small. Moreover, if LEs are distributed with some
function in coordinate spadsee the following sectionsthe
Ric=Ric(V! ViIVi Vi) = Vol 8(Vi = V! ) 8(Vi— V). ggqn;lrlibution of such types of excitations in LE kinetics is
4.1 :
(419 Let us presen®;, as a sum of two parté/, andW; in
In formulas (4.14 and (4.15 the following notations have the same way as Eq$4.10—-(4.12. Assuming that Eq.
been used. Numbers 1 and 2 mean the set of variables defit%.18 is valid, we can expand thé&functions in the expres-

where



PRE 60 KINETIC AND TRANSPORT EQUATIONS FOR.. .. 6651

sion (4.14 for W;(1,21,2) in power seriedX;. Then the The first term in formula(5.4) and in formulas(5.5) and
expressions fowV;, andWj; become (5.6) describes solitons “arriving” at the statél) as the
result of collisions, and the second term describes solitons

J “leaving” this state.
Wirk(l’,2'|1,2)=Rik(1’2',|1,2)(diRerkR) The general expression for the collision integral has the
i k
form
X S(Xi—X{) 8(X— X)), (4.23
, , =2 LudFiFd- (5.7
d
WR(1",2'|1,2 =R(1'2",|1,2)| 2+ d——5 + di——3
|k( ' | ' ) |k( 1| ' ) d| aXIZ dkaxﬁ Here
2
+2didk—axi_axk} BOG=X0) 20X Xi0)- CulFFd= [ d102/a2(w, (1217 2)F (1)F(2')
429 ~Wy(1' 2|12 (DF(2)}. (58
V. COLLISION INTEGRALS Let us discuss once more the detailed balance principle for

usual particles in the form.
In this section the expressions for the collision integrals

for all types of LE in the SG equation will be derived. It is \7V(1’,2’|1,2):\7V(1,Z 1',2). (5.9
easier to do this starting from the formulas for the probability
of collisions. Let us introduce following notations: In this form the detailed balance principle describes two-

particle collision(a generalization to three-, four-, etc par-
f=f(X,V,t), B=B(X,V,t), N=N(X,V,t) (5.1 ticle collisions is well knowi Formula(5.9) means that the
“arriving” number in state(1’,2") from state(1, 2) is equal
for the distribution functions of solitons, breathers, andto the “leaving” number from statél’,2') to state(1,2). If
phononsf, B, andN, respectively. The probability of finding the total number of arriving particles to some fixed state
the LE in the state (1;:£d1) can be defined in the usual 2) is equal to the total number of leaving particles from state
way: (1,2 then the new smoothed local balance principle can be
formulated as
dW,=F,(1)d1, (5.2)
J Wik(l,zl',z’)dl’dz':JWik(l’,2'|1,2)d1'd2',
wherei =s,b,ph andFs=f,F,=B,F,,=N. The total result
of the collisions of a sample LE with the other LE is the sum (5.10
of each collision. This is due to the special type of interac-

o : wherei,k=s,b,ph.
tion in exactly integrable models. Therefore the general col- It is not difficult to show that the probabilities of colli-

lision integral can be presented as a sum of partial COIIiSiogions defined in Sec. Il satisfy this condition. Thus the prob-
@ntegrals. For example, in the case of solitons, the COIliSiO%biIitieS W, of LE scattering processes in the SG model
integral can be written as satisfy the smoothed local balance princif@el0), while the
dissipation parts of probabilitie#/; satisfy the detailed bal-
ance principleg5.9).

The distribution function$, B, Nin thermodynamic equi-
whereLsg, Lsp, Lspn are soliton-soliton, soliton-breather, and |iprium must satisfy the following condition:

soliton-phonon collision integrals, respectively, which have
the following form: LidF; ,F =0, (5.12

L= Lo, F}+ Lop{f,B}+ Loprl F,NY, (5.3

in accordance with the smoothed local equilibrium principle
‘Css{f’f}:f d1'd2"d2{W.((1,21",2")f(1")f(2") for eachi-k collision integral. It is necessary to emphasize
that the smoothed local balance princigfel0 puts limita-
—Wed1',2'[1,2f(1)f(2)}, (5.4  tions on the probabilities of collisions, on the thermodynamic
equilibrium condition(5.11), and on the distribution func-
tionsF;.
ﬁsb{fiB}:f d1'd2'd2{Wyy(1,21",2")f(1")B(2") Having mentioned the general properties of the collision
integrals of LE in the SG equation, we proceed with the
—Wgy(1',2'[1,2f(1)B(2)}, (5.5 examination of each one. From formul@s23 and(4.24) it
is easy to obtain the following expression for the collision
integral for solitons in the low-density case:
Esph{f,N}=f d1'd2"d2{Wsp(1,21",2")f(1")N(2") ; 2
1 1
—W.(1',2'[1,2f(1)N(2)}. (5.6 Lotfa Fab=—ove o Dulve) 2o, (512
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where renormalization of the soliton velocigv and the 1 5
local coefficient of self-diffusiorD4(v) are given by sum- DbiZEJ IVol[AXpi(V1p V) 1°F2d2,  (5.2D)
ming the partial contributions:
1
Svs=D, Vg, Dve)=2, Ds(vy). (513 fbizif IVol[Aepi(Vip.V2i) PF2d2,  (5.22
i i
Here 1
KbiZEJ Vol AXpi(V1p,V2i) A@pi(V1p,Vai) F2id2.
o= f VolAXsi(vis va)Fid2,  (5.14 ®23
1 VI. KINETIC EQUATIONS AND ENTROPY PRODUCTION
DsiZEJ Vol [AXsi(Vas, Vi) JFid2. (5.19 The Boltzmann-type kinetic equations for LE with the

collision integrals constructed in the preceding section can

The collision integrals for breathers can be analyzed in &€ written in the following the standard way as
similar way, but with a very important difference, connected

. . . 2
with the conditions(4.20—(4.22. The simplest case of a ﬂ a_f_
breather ensemble is an ensemble with a distribution func- gt "LV OV (VI 5 =Duv) 72, ©1
tion of the form
0B 0B 0B
wherew, and the density of particleg satisfy the condition 2 B 2

wom(v)>n;.
It is possible to consider more general breather distribu-

Jd J
=Dy(V) WJFZ’Q)(V) +F,(V) pl

IXdp

tion functions; e.g., (6.2
B:B(X,(P,V,t)b(a)), JN ON ON
— +[V+ V(W) ] = +o+ dwpn(V)] —
whereb(w) has a sharp maximum near the point wg. a X I
For simplicity only the casé5.16) will be considered. In this 92N 92N 72
case all integrations undar, are trivial. =Dpn(V) W+2/Cph(V) W'F]:ph(V) o
For breathers the collision integral has the following ¢ ¢
form: (6.3

9B, 9°B;

B Here terms from collision integrals describing velocity renor-
L{By,Fai}=— vy X dwy, 79 +Dy 2

malization have been written on the left-hand sides of Egs.
(6.1)—(6.3). On the right-hand sides of these equations there
are only those terms describing dissipative processes leading
to homogenization of the distribution functions of LE.

It is necessary to emphasize that the collision integrals in
The first two terms in this formula describe renormalizationkinetic equationg6.1)—(6.3) are equal to zero in the homo-
of the breather velocityv, and its internal oscillation fre- geneous case. Therefore the stationary solution of the kinetic
quencydw,. The last three terms describe self-diffusion in €quations have the following form:
(x,¢) space. As in the soliton case, the quantitieg, dwy,,
Dy, Fu, and Ky, are sums of the partial contributions

+ R ” 2K 7By
b 9¢? baxde

(5.17

f=f(v), B=B(v,w,). (6.4
Heref(v),B(v,w,) are arbitrary functions of its arguments.

In other words, the kinetic equatior6.1)—(6.3) describe
homogenizationi.e., the mixing of the distribution function
of LE up to the homogeneous state in real sgdécebreath-
ers, in X,¢) spacé, and demonstrate that chaoticity in mo-
mentum space cannot be realized. For chaoticity processes in
momentum space it is necessary to exceed the limits of the
exactly integrable model, i.e., to take into account the terms
destroying the integrability in the Hamiltonian of the system.

6vb=2i (Svp)i, 6wb=2 (@p)i, Db=2 (Dp)i

Fo=2 (Fo)i, (5.18

Ko=2 (Ko)i,

where

5Vbi:f Vol AXpi(V1p,V2i) F2d2, (5.19

5wbi:f Vol A@ps(V1p,Vai) F2id2, (5.20

Let us now show that homogenization of the distribution
function leads to entropy production in the SG localized ex-
citation gas. The entropy of the classical soliton gas and
boson gases of breathers and phonons can be defined in the
standard way:
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In formulas (7.1) and (7.2 following notations have been

SzEk S., k=s,b,ph, (6.5  used.
For solitons
S _f Fiin(Fi/e)d1. €9 ny(ag) = f a(xv)f(x,v,Hdv, 7.3
The entropy evolution in time is described by the formulas
r__
d3<_ &Fk(l)l o 3 Us—f a(x,v)[v+év]f(x,v,t)dv, (7.4
r T o INF(1)dl. (6.7)
J
Using kinetic equationgs.1)—(6.3), and the definitions of Ug'=- &f a(x,v)Dsf(x,v,)dv. (7.9

D, K, and F, one can find that
For breathers

d

d—‘:“= f qid1, (6.8)
nb<ab>:f a(x,v,e,0)B(x,v,¢,0,t)dvdw, (7.6
where the sourcq of the entropy production is

kaf EI |V0(1’2)|ki|:i|i U[,ZJ a(x,v,e,w)[v+ ov]B(X,v,¢,w,t)dv dw,(77)
IF (1) IF(1))?
X{[Ax(l’z)]ki X TAe(L2] do d2. UQZ—% a(x,v,e,w)DpB(X,V,p,w,t)dv dw

(6.9 5
It is obvious that the expression is non-negative. This means B ﬁf a(x,v,¢,0)CB(X,V, ¢,0,1)dv do,
that Eq.(6.9) proves the Boltzmann entropy production theo-
rem. We would like to emphasize that the entropy production (7.8
is connected only with inhomogeneity in real space
(X,9). It is easy to see that in the homogeneous case Wr:f a(X,V, @,0)[ 0+ SWIB(X,V, ¢, 0,t)dv dw,

dFlax=dFldp=0, and there no entropy production. 7.9

VII. TRANSPORT EQUATIONS

d
In this section the consequences of kinetic equations Wg]:_ﬁf a(x,v,@,0) FpB(X,v,¢,w,t)dv do
(6.1)—(6.3) will be analyzed. Let us emphasize that the ho-
mogenization of LE in real space means the homogenization
of LE in temperature, concentration, and macroscopic veloc- Tax
ity spaces. The local macroscopic temperafli(®) is de-
fined through the local enerdy(x) averaged over a distance (7.10

d, aroundx satisfying the inequalityAX;|<d,. In other - . .
words, collisions of LE lead to the creation of diffusion, Substituting 1, the velocity and energy of LE for the vari-

thermoconductivity, and intrinsic friction processes. It isablea, it is easy to obtain the following transport equations:

easy to note that the transport equations will have the form O$OnthIty equations, hydr_odynamlcs equations, and_ equa-
local conservation laws for each type of LE separately. In théIons for Ipcal energy density. Let us write these equations in
Sine-Gordon system the numbers of solitons, breathers, ar%]gz)(ﬁ'lnlig;izor?uation a=1) can be written as

phonons are conserved separately. Besides, momentum, en- y €q fa=1)

ergy, and angular velocitye/dt (in the breather cageof

a(x,v,e,0)K,B(X,v,p,0,t)dv do.

each LE are conserved in each collision. The transport equa- %Jr i(j”rjm):o, (7.1
tion can be written in the following general form: a - gx s s
For solitons
ﬂnb J . . J . .
J 9 Tt T Uit o (brin=0. (712
st ns(as) + = [Us+Ug]=0. (7.0

Here the standard notatiofisandi; have been used fdy,
For breathers andW; with a=1, respectively.
Hydrodynamics equationsan be derived from Eq$7.1)
and (7.2 with a=v and (v,w,,) for solitons and breather,

Jd J J
- Zorr m 2 rar my_
ot (@) + 22 [Ub+UpT+ e [Wy+Wp]=0. (7.2 respectively, and have the following form:
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d J f=C e_msV§/2kBT B=C e_Eb/kBT5(w —w )
_ o (prapm— s ) b 27 Wo)-
at ngug+ X (Pst+ Ps) 0, (7.13 (7.19

J Let us discuss the concrete expressions for soliton
—NyUp+ X(PL+ Pg)+ a—(H[,+HE)=O, (7.149  and breather diffusion coefficients due to soliton-soliton,

¢ breather-breather, and soliton-breather collisions. For sim-
P p plicity we will consider the nonrelativistic solitons and
Moot (QL+ QM+ —(RL+RM=0. (7.19 breathers only\(<1). This case corresponds to small tem-
at de peraturesT <m.

The diffusion current of solitons can be presented as

at

Here ug andu, are the hydrodynamic velocities of solitons

and breathers, correspondingly;is the hydrodynamic ve- any

locity in ¢ space;P! andP[", i=s,b are the pressures for js= [n DsstnpDsp]+ —--NsDsp. (7.20
solitons and breathers; the quantitie§ and I1%, are the

pressures of breathers due to inhomogeneitie ispace; Using formulas for A ), and (AX);, from Sec. IlI, formu-
and the value® andR are defined by formula&.7)-(7.10  |35(5.13, (5.18, (7.5), and(7.19 it is possible to calculate

with a=wpp . . . both D¢ andD,. We will present here the final results:
The energy transport equatiorean be derived whela

=E; for solitons and breathers. These equations can be writ- p_—(1/4) SATIaMYYA[IN(YMS/T)2+C},  (7.2D)
ten as

b= (112) 82(2T/ 7 prsp) 22 o, (7.22
(u +UM=0, (7.16
a" where
J J 1+ w2
ZiNeTot X(UL+UB’)+£(WL+WL”)=0- (7.17 ISb:(Inl—wz if T/psp<1— w3,

The quantitiesT; mean the average energies of correspond-
ing LE. Whenu;=w;=0, the quantitiesT; are the average
energies of chaotic motiorlJ; and W; are energy density
currents; one can conclude that oty' and W™ are differ-
ent from 0 whenu;= w;=0.

Let us emphasize the important property of transport C~1.6, y~1.8.
equationg7.11)—(7.17. It is easy to see that, for any homo-
geneous distribution functions,

lep=[IN(2ypsp/ T2+ C if 15T/ pgp>1— wd.
(7.23

Here

There are two dissipative currents for breattjrandi®,
f=f(v,t), B=B(v,wz.t) (7.18 which can be written as
with constant temperatures, hydrodynamic velocities, and lb (NLDpp+ Ns Dbs) Al +anbs'9ns
chemical potentialg;, all dissipative terms in these equa- 2
tions are equal to zero. In other words, there is no energy and on
momentum exchange between homogeneous gases of soli- + (NpKpp+ nSKbS)—b,
tons and breathers. This special property of Egs13— de
(7.17) is eliminated by taking into consideration terms in the
Hamiltonian that destroy the integrability of the model. — (NpFyp+ NeF ) +n K ang

As an example of the explicit calculation of transport co- bbb bs BDS gy
efficients we shall obtain the expression for the self-diffusion 5
coefficients, assuming that the distribution functions of soli- Np

’ . + (NpKppt NgKpg) —. 7.2

tons and breathers have following form: (MoK ppFNeKps) 72 (7.24

TABLE |. Diffusion coefficients for breather.

ik T/ pi<1— s 15T/ uy>1— wl
Ik I I I
bS | l+w02 | 1+(x)0 772 | 2’)/Mb52+c
T T N7
2
bb YoMy, YoMy ™ W2
5 n—-—o— In—| +C
(1—wp) (1—wp)T T
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After routine calculations the coefficienB;,, Fiy., and  whereMg andM, are defined by formulag.16).

Kikx can be presented in following general form: The expressions faij, are presented in the Table I. It is
> 2 easy to see that the diffusion of breathers in real sgace
6 T ; :
D=2 D spacé is much faster than the relaxation @n
b= | M, bb
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